Numerical Exponential Decay to Dissipative Bresse System

نویسندگان

  • Mauro de Lima Santos
  • Dilberto da Silva Almeida Júnior
چکیده

We consider the Bresse system with frictional dissipative terms acting in all the equations. We show the exponential decay of the solution by using a method developed by Z. Liu and S. Zheng and their collaborators in past years. The numerical computations were made by using the finite difference method to prove the theoretical results. In particular, the finite difference method in our case is locking free.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decay Rates for Solutions to Thermoelastic Bresse Systems of Types I and Iii

In this article, we study the energy decay for the thermoelastic Bresse system in the whole line with two dissipative mechanisms, given by heat conduction (Types I and III). We prove that the decay rate of the solutions are very slow. More precisely, we show that the solutions decay with the rate of (1+t)−1/8 in the L2-norm, whenever the initial data belongs to L1(R)∩Hs(R) for a suitable s. The...

متن کامل

Stabilization of a Type III Thermoelastic Bresse System with Distributed Delay-time

In this paper, we investigate a Bresse-type system of thermoelasticity of type III in the presence of a distributed delay. We prove the well-posedness of the problem. Furthermore, an exponential stability result will be shown without the usual assumption on the wave speeds. To achieve our goals, we make use of the semigroup method and the energy method.

متن کامل

Well-Posedness and Asymptotic Stability of Solutions to the Bresse System under Cattaneo’s Law with Infinite Memories and Time-Varying Delays

In this paper, we study a one-dimensional Bresse-Cattaneo system with infinite memories and time-dependent delay term (the coefficient of which is not necessarily positive) in the internal feedbacks. First, it is proved that the system is well-posed by means of the Hille-Yosida theorem under suitable assumptions on the relaxation functions. Then, without any restriction on the speeds of wave pr...

متن کامل

Stochastic Hamiltonian Systems: Exponential Convergence to the Invariant Measure, and Discretization by the Implicit Euler Scheme

In this paper we carefully study the large time behaviour of u(t, x, y) := Ex,y f(Xt, Yt)− ∫ f dμ, where (Xt, Yt) is the solution of a stochastic Hamiltonian dissipative system with non gbally Lipschitz coefficients, μ its unique invariant law, and f a smooth function with polynomial growth at infinity. Our aim is to prove the exponential decay to 0 of u(t, x, y) and all its derivatives when t ...

متن کامل

Exponential Decay of Wavelength in a Dissipative System

Applying a technique developed in a recent work[1] to calculate wavefunction evolution in a dissipative system with Ohmic friction, we show that the wavelength of the wavefunction decays exponentially, while the Brownian motion width gradually increases. In an interference experiment, when these two parameters become equal, the Brownian motion erases the fringes, the system thus approaches clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010